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Abstract Recently, incidents of hazardous accumula-

tions of CO2 in homes built on or near reclaimed mine land

have been shown to be linked to neutralization reactions

between acidic mine drainage and carbonate material.

Surface CO2 flux measurements have been proposed as a

potentially cheap and effective strategy to monitor and

delineate such hazards to avoid residential and commercial

real-estate development on high risk zones. For this strat-

egy to work, more work is needed to understand the

strength of association between CO2 fluxes on reclaimed

mine land and relevant covariates (e.g. sample elevation,

soil temperature and soil moisture) to ensure comprehen-

sive monitoring. The objective of this study was to

understand the extent to which CO2 fluxes on reclaimed

spoil are affected by sample elevation, soil temperature and

soil moisture. Specifically, the work tested the hypothesis

that CO2 fluxes are correlated to elevation, soil temperature

and soil moisture. Carbon dioxide fluxes from three study

sites were measured and used in statistical analysis to test

the research hypothesis. The results show statistically sig-

nificant (p \ 0.05) positive but monotonic correlation

between CO2 fluxes and soil temperature, while fluxes and

elevation are negatively correlated, monotonically in a

similar manner. Where significant, correlation between

fluxes and soil moisture was observed to be negative. This

result implies that flux surveys on reclaimed mine land

need to measure elevation, soil temperature and soil

moisture at survey points.

Keywords CO2 fluxes � Soil moisture � Soil temperature �
Sample elevation � Acid mine drainage � Mine reclamation

Introduction

Carbon dioxide (CO2) efflux from soil is a natural phe-

nomenon. Sources of soil CO2 emissions include, but are

not limited to, plant root and microbial respiration. Other

sources on localized scales include volcanoes, geothermal

springs and dissolution of limestone by weakly, acidic

precipitation. Recent work shows that another source of

soil CO2 is neutralization reactions between acid mine

drainage (AMD), a low pH and high metal content leachate

from the oxidation of sulphide minerals, and carbonate

materials associated with reclaimed surface coal mine

lands. During mine reclamation, carbonate materials, usu-

ally crushed limestone, are added as an amendment to

sulphide bearing overburden to neutralize AMD. Carbonate

minerals may also exist naturally in the overburden

material.

There have been reported incidents of elevated con-

centrations of CO2 in homes constructed on or adjacent to

reclaimed surface coal mine spoils (Ehler 2002; Laughrey

and Baldassare 2003; Harrison et al. 2004; Robinson 2010).

Stable carbon isotopic analysis has identified AMD neu-

tralization reactions as the main source of the CO2 that

causes this hazard. While soil respiration has never caused
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any documented incident of high CO2 concentrations in

homes and structures, CO2 derived from AMD neutral-

ization reactions on reclaimed surface coal mines soils can

result in high concentrations of the gas in basements and

crawl spaces of homes constructed on or adjacent to such

land. This stray CO2 presents a new health and safety

hazard to the occupants of such homes and their pets.

Numerous incidents of potentially lethal concentrations of

CO2 in homes, some in excess of 25 % have been reported

in the literature (Ehler 2002; Laughrey and Baldassare

2003; Robinson 2010). In some instances, these high CO2

concentrations have resulted in fatalities (Dawson et al.

2009; Lahmira et al. 2009).

The natural concentration of CO2 in the atmosphere is

0.035 %. The US Occupational Safety and Health

Administration’s (OSHA’s) general permissible exposure

limit is 0.5 %, which happens to be the American Con-

ference of Industrial Hygienists’ recommendation as well.

OSHA’s short-term exposure limit is 3 %. CO2 concen-

trations above this threshold, which are usually accompa-

nied by oxygen deficiency, can cause headaches, sweating,

rapid breathing, increased heartbeat, shortness of breath,

dizziness, mental depression, visual disturbances or shak-

ing. Concentrations above 10 % can produce uncon-

sciousness or death.

The efflux of gas from soils is influenced by, among

others, barometric pressure changes, soil moisture content

(or gas filled porosity) and temperature gradients (Tuli and

Hopmans 2004; Davidson et al. 1998; Kätterer et al. 1998).

If flux monitoring is to be useful in studying the hazards

posed by CO2 from AMD neutralization reactions, there is

a need to understand these relationships for reclaimed mine

land with known AMD-generated CO2. This paper exam-

ines the correlation between CO2 fluxes from reclaimed

mine land with AMD-related CO2 hazard and soil tem-

perature, soil moisture content, elevation and barometric

pressure. Fluxes were monitored at three reclaimed surface

coal mines in the United States of America (USA) using

the static chamber accumulation (CA) method. Elevation

of the sample point, soil moisture and temperature was also

measured at each of the sample locations. Barometric

pressure was monitored during sampling. The data were

used to test the hypothesis that CO2 fluxes are correlated to

elevation, soil temperature and moisture (H0 : q ¼ 0).

This work provides insight into the relationship between

CO2 fluxes on reclaimed mine land with AMD-generated

CO2 hazards, on one hand, and elevation, soil moisture and

soil temperature, on the other. These relationships are

critical in designing sampling protocols to monitor soil

CO2 on such reclaimed mine lands and understanding

spatial variation in fluxes. Such understanding of spatial

variation is crucial for using CA flux monitoring to delin-

eate hazards prior to construction, post-mining.

Soil Co2 transport mechanisms, emissions, and flux

monitoring

CO2, like other soil trace gases, has been monitored over

the years from agricultural, forest, and pasture soils

(Davidson et al. 1998, 2000; Pihlatie et al. 2007) and

volcanic and hydrothermal activity areas (Lewicki et al.

2007; Bergfeld et al. 2001; Chiodini et al. 1998), in an

effort to understand the mechanisms responsible for and

conditions affecting efflux of these trace gases from soil.

Some studies have focused on identifying sources of and

factors affecting soil CO2 fluxes (Tuli and Hopmans 2004).

Trace gas transport through most soils is understood to

generally follow two main mechanisms: concentration-

driven diffusive flow (Pihlatie et al. 2007; Scanlon et al.

2002) and pressure-driven advective flow (Scanlon et al.

2002). In reclaimed pyritic mine soils such as coal mine

spoils, however, a temperature-driven diffusive transport

may also be involved due the heat produced by the exo-

thermic AMD formation reactions (Lefebvre et al. 2001;

Hockley et al. 2009). Diffusion is driven by a concentration

gradient between soil pores and the atmosphere. CO2 dif-

fuses from soil where its concentration is high into the

atmosphere. Oxygen is consumed during soil (plant and

microbial) respiration in natural soils and during AMD

formation in sulphur-bearing reclaimed mine soils. CO2 is

produced in both soil respiration and AMD-carbonate

neutralization reactions and, hence, its concentration in the

soil is higher than in the atmosphere and it is emitted from

the soil. Atmospheric pressure fluctuations are responsible

for the advective transport of CO2 and other soil trace gases

from soil into the atmosphere, a phenomenon known as

atmospheric pumping (Massman 2006). The response lag

of subsurface pressure, to atmospheric pressure changes,

results in pressure gradients, which drive advective flow.

CO2 concentration and transport in soil are influenced

by soil temperature, which affects respiration/metabolic

rates, chemical reaction rates and molecular kinetic energy,

all of which increase generally with increase in soil tem-

perature. Higher soil temperature results in higher diffusion

rates and, hence, higher CO2 fluxes. However, it should be

noted that temperature extremes together with non-optimal

moisture conditions may be rate limiting for soil respiration

processes. Gas transport in soil is known to be controlled

by temperature, pressure and air-filled soil pore spaces

(Davidson et al. 1998; Aachib et al. 2004; Pihlatie et al.

2007). The extent of this correlation varies in different

types of soil and has not been fully investigated in

reclaimed mine soils, which are highly heterogeneous

(Jacinthe and Lal 2006; Lahmira and Lefebvre 2007). This

heterogeneity (e.g. mineralogy and particle sizes) is

affected by mining and reclamation practices, mining and

reclamation equipment, environmental management
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practices (e.g. selective handling and burial of pyritic

materials in pods in the spoil) and pre-mining soils.

Soil moisture content affects CO2 emissions due to the

effect on air-filled porosity and phase flow (single- or

multi-phase flow) (Davidson et al. 1998; Harper et al.

2005). During rainfall events, water infiltrating into soil

creates a wetting front from the surface that fills up the pore

spaces displacing soil gases in the process and reducing

soil air-filled porosity and gas diffusion. Thus, during a rain

storm, soil CO2 fluxes are expected to be generally low.

Displacement of soil gases by the wetting front may also

result in increased soil gas concentrations and partial

pressures. However, the wetting front through the soil is

usually not uniform horizontally, which results in front

instability or finger-flow in areas of high water perme-

ability due to varying initial soil moisture content, presence

of fractures or micro-pores, varying soil texture and dura-

tion of precipitation event (Bauters et al. 2000; Glass et al.

1989, 1991; Kawamoto et al. 2006; Selker et al. 1992). The

extent of the relationship between soil moisture content and

fluxes on reclaimed mine spoils requires further attention

for the same reasons as above.

AMD neutralization has been known to produce high

soil CO2 concentrations (Cravotta et al. 1994). However, in

the past, this CO2 has never been thought to be a hazard. In

recent years, incidents of elevated CO2 in homes con-

structed on or adjacent to reclaimed surface coal mines

have highlighted the potential health and safety hazard

posed by soil gas emissions from such lands. These inci-

dents underscore the need for reliable monitoring and

accurate predictions of CO2 gas emissions from reclaimed

coal mine spoils. This requires better understanding of the

processes responsible for, and factors influencing, such

emissions beyond what is already known about emissions

from other soils. This understanding is critical for the

development of appropriate monitoring and mitigation.

Methods

Study sites

The field study was conducted at three reclaimed surface

coal mine sites in south-western Indiana, south-western

Pennsylvania and west-central Missouri in the USA. Fig-

ures 1, 2 and 3 show the sites and the sampling locations.

The Hudson site, South-Western Indiana

This site is located in Pike County in south-western Indiana

(Latitude: 38�1904200 and Longitude: 87�0802700)—Fig. 1. It

has a single story building with a walk-in basement con-

structed on a reclaimed surface coal mine. The site covers

an area of about 36 hectares with soils described as Fair-

point loam. The site was reclaimed at 1–15 slopes (NRCS

2011). Mining was carried out between 1986 and 1992 and

the site was reclaimed with carbonate amendment and

about 0.91 meters of top soil capping. The spoil material

extends about 11.6 meters below the surface. The home has

been experiencing intermittent episodes of elevated con-

centrations of stray CO2 since 2006 (Robinson 2010). The

area receives average total rainfall of 1,184.1 mm (46.6

inches) and 304.8 mm (12 inches) of snowfall. The average

daily temperature is 12.7 �C (55 �F) with minimum and

maximum temperatures of—6.1 �C (21 �F) and 31.1 �C

(88 �F) for the winter (January) and summer (July) months,

respectively (National Oceanic and Atmospheric Admin-

istration 1971–2000).

The sampling campaign at the Hudson site was on

March 30 to April 1, 2010. Soil CO2 fluxes were measured

at 138 sample locations established on a 22.9 9 45.7 m

(75 9 150 ft) sampling grid.

The Godin site, South-Western Pennsylvania

This site (Fig. 2) is situated near the town of Jenners in

Somerset County in south-western Pennsylvania (Latitude:

40�080200 and Longitude: 79�0205200). The home is built on

spoil of the reclaimed Godin Mine, which is about 21.34 m

(70 ft) thick. Stray CO2 in the Godin residence was inves-

tigated by the Pennsylvania Department of Environmental

Protection (PA-DEP) in 2003 (Laughrey and Baldassare

Fig. 1 Hudson study site with sample points and house (black

rectangle)
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2003). The mining permit required an operational plan that

included spoiling pit cleanings in pods at least 3.05 m (10 ft)

above the pit floor. Crushed limestone was added to the pit

floor at a rate of 7.34 tonnes/hectare (20 tons/acre) prior to

backfilling and grading. The total annual rainfall averages

1,053 mm (41.45 in.) and 881 mm (34.7 in.) of snowfall.

The average daily temperature is 6.7 �C (44.1 �F) and ranges

from an average minimum temperature of—4.9 �C (23.1 �F)

to a maximum of 18.9 �C (66 �F) for the winter (January)

and summer (July), respectively.

Flux sampling was carried out at the Godin site on July

13, 14 and 16, 2010. Soil CO2 fluxes were measured from

71 sample locations established on a 61.0 m 9 61.0 m

(200 9 200 ft) sampling grid. Soil temperature and mois-

ture content were not measured at this site due to equip-

ment malfunction.

The Germantown site, West-Central Missouri

The Germantown site is located near Germantown in

Henry County in west-central Missouri (Latitude:

38�1601700 and Longitude: 94�0100400). The site is a

reclaimed surface coal mine that is being used as a pasture.

Mining occurred in the area in the 1950s to early 1970s,

when it was abandoned. The area, which covers about

14.2 ha (35 acres), was reclaimed by the Missouri

Department of Natural Resources (MODNR) under the

Office of Surface Mining, Reclamation and Enforcement’s

(OSMRE’s) Abandoned Mine Land program. Reclamation

included the addition of 73 t/ha (200 tons/acre) of crushed

limestone. The reclamation was completed in 2002. The

sampled area covers about 2.3 hectares (5.6 acres). The

soils are characterized as pits-dumps complex (NRCS

2011). The total annual rainfall averages 1,107 mm

(43.6 in.) and 404 mm (15.9 in.) of snowfall. The average

daily temperature is 12.2 �C (54 �F) and ranges from an

average minimum temperature of 5.5 �C (41.9 �F) to a

maximum of 18.9 �C (66 �F) for the winter (January) and

summer (July), respectively.

Soil CO2 flux sampling at Germantown was conducted

in 2009. Sampling was on 15.24 9 15.24 m (50 9 50 ft)

square grid pattern. The first sampling campaign at this site

was on October 2, 2009 and measurements were made on

double the grid spacing, (30.48 9 30.48 m), but on the

same sample grid. It involved 40 samples. The subsequent

flux measurements were made on October 24 and

November 7, 2009 on the 15.24 by 15.24 m grid.

Sampling procedure

Soil CO2 fluxes were measured at regular sampling grids at

all sites using accumulation chamber (AC) method for

trace gas measurements (Parkin et al. 2003). However, as

discussed in the previous section, the grid spacing differed

from site to site. A portable, automated soil-CO2 flux

system, (model: LI-8100-103) by Licor Biosciences, Inc.

(Lincoln, Nebraska, USA) was used for flux measurements.

The system comprises: (i) a 200 mm diameter, 100 mm

high collar; (ii) an infrared gas analyser and (iii) a chamber.

The collars were made by cutting 100 mm lengths off a

200-mm diameter SDR36 polyvinyl chloride (PVC) sewer

pipe. One end of the cut pieces was bevelled for easy

insertion into the soil. The collars were installed at least

24 h prior to flux measurements to allow the soil gas fluxes

to equilibrate after initial disturbance during installation.

Fig. 2 Godin study site with sample points and house (black

rectangle)

Fig. 3 Germantown study site with sample points
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The LI-8100 is capable of simultaneous logging from up to

four auxiliary sensors. For this project, auxiliary sensors

were used to acquire soil moisture and temperature data at

each sampling point.

An ECH2O EC-5 soil moisture probe (Decagon Devi-

ces, Inc., Pullman, WA), with at least 0.03 m3/m3 accuracy

and 10 ms measurement time, was used for measuring

volumetric soil moisture content. An Omega (Omega

Engineering Inc., Stamford, Connecticut) soil temperature

probe (a T-handled Type E thermocouple with 6.4 mm

(0.2500) diameter and 250 mm (1000) immersion length) was

used to measure soil temperature. The thermocouples

measurement range is from -40 to [100 �C. The soil

moisture and temperature were measured to a depth of

50 mm at each CO2 flux sampling point at all sites for

consistent results.

Correlation analysis

The strengths of association between CO2 flux and sample

elevation, soil moisture and soil temperature were inves-

tigated using the parametric Pearson’s and nonparametric

Spearman’s measures of correlation. A correlation coeffi-

cient is a measure of how two variables vary with respect to

each other. The Pearson’s product-moment correlation

measures both the strength and direction of a linear rela-

tionship between two variables. It is sensitive to non-nor-

mal data and presence of outliers.

The parametric Pearson’s correlation coefficient, q, is

given by Eq. (1). �x is the mean of x, �y is the average of y

and sx and sy are standard deviations of x and y, respec-

tively. The Spearman’s correlation coefficient is a rank-

ordered, nonparametric measure of association and is more

suited for nonlinear relationships. SAS correlation proce-

dure, PROC CORR (SAS Institute Inc. 2004) was used to

compute the Spearman’s correlations (Eq. 2). pi is the rank

of xi, Qi is the rank of yi, �R is the mean of the pi values, and
�Q is the mean of the Qi, values.

q ¼
1
n

Pn
i¼1 xi � xð Þ yi � yð Þ

sxsy

ð1Þ

r ¼
Pn

i¼1 Pi � P
� �

Qi � Q
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Pi � P
� �2

Qi � Q
� �2

q ð2Þ

If soil CO2 flux, the dependent variable, generally

increases or decreases (monotonic) as a covariate (eleva-

tion, soil temperature, or soil moisture) increases or

decreases, a positive correlation exists and vice versa. If the

relationship is perfect and positive, the correlation coeffi-

cient would be 1 and -1 if it is negative. When there is no

linear predictability between the flux and any one of the

other covariates, the correlation is 0 and they are said to be

independent.

Both measures were used to evaluate the correlations

between CO2 flux as the dependent variable and the other

variables as independent variables under the hypothesis

that the correlation between CO2 flux and these covariates

is insignificant, using the hypothesis test in Eq. (3):

H0 : q ¼ 0 versus H1 : q 6¼ 0 ð3Þ

Results and discussions

Preliminary analysis

A summary of the data is shown in Table1. The soil-CO2

fluxes, FCO2
, were found to be positively skewed for all

sampling days for all sites, although the data from the

Hudson site seem to be the most skewed. This indicates

Table 1 Summary statistics of

soil CO2 fluxes
Study site Hudson Godin Germantown

Sampling day Day 1 Day 2 Day 3 Day 1 Day 2 Day 3 Day 1 Day 2 Day 3

Mean 2.35 2.58 2.96 4.90 8.93 7.88 3.26 2.42 3.27

Std. deviation 1.81 1.71 1.80 1.74 2.76 2.71 1.58 1.08 1.46

Variance 3.29 2.93 3.24 3.03 7.61 7.36 2.48 1.17 2.13

Coeff. of variation 77.0 66.3 60.8 35.5 30.9 34.4 48.5 43.5 44.6

Skewness 2.17 2.17 2.11 0.24 0.34 0.58 0.69 0.68 0.56

Kurtosis 5.76 5.90 5.61 -0.09 0.63 -0.02 -0.09 0.30 -0.35

No. of samples 132 136 131 71 71 71 41 89 90

Minimum 0.38 0.75 0.31 1.25 1.88 2.73 0.83 0.42 0.82

1st Quartile 1.11 1.47 1.79 3.63 7.08 5.76 2.29 1.62 2.13

Median 1.82 2.12 2.59 4.80 8.91 7.89 2.88 2.20 3.02

3rd Quartile 2.87 3.11 3.59 6.04 10.55 9.50 4.52 2.98 4.17

Maximum 10.57 9.94 10.96 9.19 15.76 15.11 7.16 5.77 6.67
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that the data were non-normal. Skewed data are not sur-

prising given that generally environmental data have a

lower bound of zero with possible outliers in the high

values (Berthouex and Brown 1994). Since correlation tests

assume normality, the authors tested for normality using

the Anderson–Darling test (test statistic, A2) and log-

transformed those datasets that were not normal in an

attempt to make them normally distributed (Table 2). The

normality tests show that all the data, with the exception of

Day 3 of the Godin site data, were non-normal. After log

transforming the data, the non-normality was removed

(Table 2).

Sampling day effects on CO2 fluxes were analysed using

multiple mean comparison t test using multivariate analysis

of variance (MANOVA). The results (Table 3) show that

the effects of sampling day are significant (p B 0.001) on

CO2 fluxes and this holds true for all the sites except for

Day 1 and Day 3 of sampling at the Germantown site,

which show a confidence interval that includes zero. The

fact that sample day has significant effect on soil-CO2

fluxes was to be expected as conditions, such as soil tem-

perature and moisture conditions (Bergfeld et al. 2001;

Raich and Tufekcioglu 2000; Rustad et al. 2000), atmo-

spheric pressure (Chiodini et al. 1998; Lewicki et al. 2007),

wind speed (Lewicki et al. 2007) and soil respiration rates

(Davidson et al. 2000) would not be expected to be the

same for all of the sampling days.

Finally, the effect of barometric pressure on the fluxes

was evaluated, qualitatively. Figure 4 shows a typical

plot of barometric pressure and fluxes for the sampling

period in the day [similar plots for all data sets can be

found in Mathiba (2013)]. There appears not to be a

significant shift in fluxes as pressure changes gradually

during the day. The correlation could not be tested

quantitatively because the weather stations only logged

barometric pressure periodically (1 h intervals) making it

impossible to obtain barometric pressure readings for

each flux reading.

Table 2 Tests for normality Hudson Godin Germantown

Day 1 Day 2 Day 3 Day 1 Day 2 Day 3 Day 1 Day 2 Day 3

FCO2
A2 7.162 7.259 6.511 0.882 1.021 0.262 0.764 0.904 1.058

p value \0.005 \0.005 \0.005 0.023 0.010 0.696 0.043 0.020 0.008

ln FCO2
ð Þ A2 0.467 0.503 0.493 0.213 0.377 – 0.392 0.682 0.466

p value 0.248 0.201 0.213 0.847 0.401 – 0.362 0.072 0.247

Table 3 Tests for sample day

effects
Site Sample day

comparison

Difference between

means lmol/m2/s

Simultaneous 95 %

confidence limits lmol/m2/s

F value p value

Hudson Day 1 Day 2 0.3737 -0.7025 -0.0449 7.05 0.0010

Day 1 Day 3 -0.7575 -1.0893 -0.4256

Day 2 Day 3 -0.3838 -0.7132 -0.0544

Godin Day 1 Day 2 -3.9949 -4.9510 -3.0389 51.36 \0.0001

Day 1 Day 3 -2.9915 -3.9476 -2.0355

Day 2 Day 3 1.0034 0.0473 1.9594

Germantown Day 1 Day 2 0.8658 0.2492 1.4825 11.03 \0.0001

Day 2 Day 3 -0.8562 -1.3311 -0.3813

Day 1 Day 3 0.0096 -0.5972 0.6163

0

1

2

3

4

5

6

7

8

9

10

30.18

30.20

30.22

30.24

30.26

30.28

11
:3

8:
03

 A
M

11
:5

6:
42

 A
M

12
:1

4:
40

 P
M

12
:3

3:
16

 P
M

12
:4

8:
38

 P
M

1:
05

:1
3 

PM
1:

22
:0

1 
PM

1:
37

:3
9 

PM
1:

51
:1

6 
PM

2:
14

:3
2 

PM
2:

30
:2

5 
PM

2:
46

:2
4 

PM
3:

01
:4

8 
PM

3:
19

:5
3 

PM
3:

34
:4

3 
PM

3:
47

:4
2 

PM
4:

01
:5

6 
PM

4:
19

:4
3 

PM
4:

40
:0

9 
PM

4:
58

:3
3 

PM

C
O

2
flu

x 
(µ

 m
ol

 m
-2

s-1
)

A
tm

os
ph

er
ic

 p
re

ss
ur

e 
(b

ar
s)

Time of Sampling

Atm. Pressure Flux

Fig. 4 Effect of barometric pressure on fluxes (sample plot using

Germantown Day 3 data)
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Correlation analysis

Hudson site

Table 4 shows the results of the Hudson site correlation

analysis. CO2 fluxes are significantly correlated with soil

temperature. The Pearson’s correlations are positive for all

3 days. The nonparametric Spearman’s correlation coeffi-

cients show similar results except for sampling Day 2,

which shows no significant correlation of flux with soil

temperature. The data show a positive and monotonic

relationship. That is, CO2 flux increases (decreases) as soil

temperature, but the relation may or may not be linear.

Figure 5 shows the scatter plots of CO2 flux and soil

temperatures for all 3 days of sampling. All 3 days show

some patterns of positive correlation. The figure shows

relatively strong positive correlation on Day 1 compared to

the other two sampling days.

Figure 6 shows the scatter plots of CO2 flux and soil

moisture for the three sampling days. All three plots show

some pattern of negative correlation even though the cor-

relation is not very strong, which supports the observed

correlation coefficients (-0.37 to -0.16).

Figure 7 shows scatter plots of CO2 fluxes and sample

elevation. This figure also shows weak (negative) correla-

tions. The plots show the relative strength of the correlation

on the different days.

Soil temperature and moisture show no significant cor-

relation except for Day 1 (q = -0.24, p = 0.007; and

r = -0.21, p = 0.015). There is significant, negative cor-

relation between soil temperature and elevation on all of

the three sampling days shown by both parametric and

nonparametric coefficients. The data show no correlation

between soil moisture and sample elevation.

Godin site

As mentioned above, due to equipment malfunction, no

soil moisture and temperature measurements were taken

from the Godin site. Table 5 shows the correlation ana-

lysis between ln FCO2
ð Þ and elevation, except for Day 3,

where the correlation is between FCO2
and elevation (note

that the rank correlations—Spearman correlations—are all

between raw fluxes and covariates). The result shows no

significant (a = 0.05) correlation between CO2 fluxes and

sample elevation for the Godin site except for Day 3 of

sampling, according to the Pearson’s correlation coeffi-

cients. Spearman’s correlation coefficients show signifi-

cant negative correlations on all three days. This indicates

the observed correlations are nonlinear (Pearson correla-

tion coefficients measure linear correlations). Figure 8

shows the plots of CO2 flux against sample elevation. Day

3 shows a general decrease in CO2 fluxes as elevation

increases.

Table 4 Correlation analysis

results for Hudson site
Day Correlated

variables

Pearson’s correlation coefficients Spearman’s correlation coefficients

Soil

temperature

Soil

moisture

Elevation Soil

temperature

Soil

moisture

Elevation

1 ln FCO2
ð Þ 0.45 -0.37 -0.15 0.48 -0.39 -0.16

p value \0.0001 \0.0001 0.093 \0.0001 \0.0001 0.067

Soil temperature -0.24 -0.25 -0.21 -0.28

p value 0.007 0.004 0.015 0.001

Soil moisture -0.13 -0.13

0.146 0.150

2 ln FCO2
ð Þ 0.26 -0.16 -0.22 0.11 -0.14 -0.25

p value 0.003 0.062 0.010 0.215 0.120 0.004

Soil temperature 0.11 -0.17 -0.10 -0.20

p value 0.186 0.051 0.244 0.022

Soil moisture -0.06 -0.10

p value 0.525 0.23

3 ln FCO2
ð Þ 0.23 -0.30 -0.23 0.24 -0.34 -0.31

p value 0.010 0.001 0.009 0.007 \0.0001 0.0003

Soil temperature -0.03 -0.21 -0.02 -0.30

p value 0.740 0.016 0.865 0.0004

Soil moisture 0.10 0.07

p value 0.279 0.462
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Germantown site

Table 6 shows the results of correlation analysis for data

from the Germantown site, which shows non-significant

correlation between CO2 flux and soil temperature. Both

Pearson’s and Spearman’s correlation coefficients are

negative for Days 1 and 2. CO2 fluxes are shown to be

significantly correlated with soil moisture for Days 1 and 3

but not for Day 2, which shows no significant correlation

(0.228 B p B 0.235) between fluxes and soil moisture.

Pearson’s and Spearman’s correlation coefficients are

negative for all days.

Spearman’s correlation coefficients indicate a negative

(-0.35 and -0.15, respectively) and significant

(p B 0.033) correlation between flux and elevation for Day

1 and Day 3. Pearson’s correlation coefficients confirm the

significant (a = 0.1) correlation for Day 3 (p = 0.091) but

not for Day 1. Both Pearson’s and Spearman’s correlation

shows no significant correlation for Day 2.

Figure 9 shows the scatter plots of CO2 flux and soil

temperatures for all 3 days of sampling. The figure shows

weak correlations, which confirm the low correlation

coefficients (-0.19 to 0.04) observed in the correlation

analysis. There is a relatively strong negative correlation

on Day 1 compared to the other two sampling days with no

discernible correlation on Day 3.

Fig. 5 CO2 flux versus soil

temperature at the Hudson site:

a Day 1; b Day 2 and c Day 3

Fig. 6 CO2 flux versus soil

moisture at the Hudson site:

a Day 1; b Day 2; and c Day 3

Fig. 7 CO2 flux versus sample

elevation at the Hudson site:

a Day 1; b Day 2 and c Day 3

Table 5 Correlation analysis results for Godin site FCO2
(Pearson)/

ln FCO2
ð Þ (Spearman) versus elevation

Pearson’s correlation

coefficients

Spearman’s correlation

coefficients

Sample Day 1 2 3 1 2 3

Coefficient -0.14 0.10 -0.28 -0.24 -0.24 -0.31

p value 0.261 0.417 0.018 0.042 0.041 0.009
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Figure 10 shows scatter plots of the fluxes against soil

moisture. The figure shows fluxes, generally, decreases and

soil moisture increases on Days 1 and 3. Although, it can

be said that Day 2 also shows such a trend, it is much less

apparent.

Figure 11 shows plots of CO2 fluxes against sample

point elevation. Day 1 shows a negative correlation

between fluxes and elevation. Although Days 2 and 3

possibly show the same negative correlation, it is not that

obvious. These are confirmed by the results in Table 6,

with no significant correlation observed on Day 2, while

significant correlation is only observed using the Spearman

correlation coefficient. This will suggest the correlation in

the Day 3 is not linear.

The data show no significant correlation between soil

temperature and moisture for the Germantown data except

for Day 3, which shows a negative correlation (q = -0.18,

p = 0.005; r = -0.24, p = 0.0003). There are no signifi-

cant correlations observed between soil temperature and

sample elevation for the Germantown data at 95 % confi-

dence. However, at 90 % confidence, Day 1 and Day 3

show weak (-0.28 B q B -0.12, -0.31 B r B -0.13),

but significant correlation (p \ 0.080). There is no signif-

icant relationship observed between the soil moisture and

elevation for the Germantown data.

Discussion

CO2 flux versus soil temperature

Statistically significant correlation between CO2 fluxes and

soil temperature was observed at the Hudson site but not at

the Germantown site. The correlation was positive,

Fig. 8 CO2 flux versus sample

elevation at the Godin site:

a Day 1; b Day 2; and c Day 3

Table 6 Correlation analysis results for Germantown site

Day Correlated variables Pearson’s correlation coefficients Spearman’s correlation coefficients

Soil temperature Soil moisture Elevation Soil temperature Soil moisture Elevation

1 ln FCO2
ð Þ -0.19 -0.34 -0.37 -0.16 -0.37 -0.35

p value 0.2502 0.038 0.233 0.327 0.023 0.033

Soil temperature 0.08 -0.28 0.07 -0.31

p value 0.615 0.080 0.666 0.056

Soil moisture -0.14 -0.18

p value 0.381 0.275

2 ln FCO2
ð Þ -0.14 -0.13 -0.03 -0.13 -0.15 -0.07

p value 0.213 0.228 0.785 0.235 0.160 0.507

Soil temperature 0.01 -0.17 0.03 -0.15

p value 0.898 0.114 0.806 0.172

Soil moisture 0.11 0.07

p value 0.318 0.528

3 ln FCO2
ð Þ 0.04 -0.28 -0.11 0.01 -0.29 -0.15

p value 0.600 \0.0001 0.091 0.844 \0.0001 0.027

Soil temperature -0.18 -0.12 -0.24 -0.13

p value 0.005 0.080 0.0003 0.052

Soil moisture -0.06 -0.09

p value 0.366 0.181
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indicating that soil CO2 flux increased as soil temperature

increased. However, the correlation coefficients are rela-

tively low (0.23–0.45) compared to what is reported in the

literature for natural soils—0.36 to 0.68 (Davidson et al.

1998; Reth et al. 2005; Nkongolo 2010). The relationship

between soil respiration, represented by soil CO2 fluxes,

and soil temperature is known to be inconsistent (Davidson

et al. 1998). This may be due to confounding effects1 of

soil temperature and moisture (Risk et al. 2002; Borken

et al. 2003). The weaker, compared to some natural soils,

observed correlation between CO2 fluxes and soil temper-

ature is not what one would expect if there is significant

contribution from AMD-generated CO2, since sulphide

oxidation is exothermic. It is also possible that on the day

of sampling, the contribution of AMD-generated CO2 may

have been low. Systematic stable carbon and oxygen iso-

tope analysis is required to examine the effect of the con-

tribution of AMD-generated CO2 on the correlation

between temperature (indeed all the explanatory variables

examined in this work) and CO2 fluxes. The influx of CO2

into these homes is episodic (Robinson 2010) suggesting

that significant upward flow of CO2 may also be episodic.

CO2 flux from reclaimed mine land is likely to be a

mixture from at least two sources: biogenic and AMD-

derived CO2. The latter source is characterized by heat

generation from exothermic oxidation reactions, which

lead to CO2 production. The heat produced increases the

internal temperature of the mine spoil and inducing a

thermal gradient that may cause convective soil gas

transport and heat transfer, both of which are not present in

1 The masking of true effects of a variable by the effects of one or

more other variable(s) that are so closely related that it is not easy to

separate their individual effects.

Fig. 11 CO2 flux versus sample

elevation at the Germantown

site: a Day 1; b Day 2 and c Day

3

Fig. 9 CO2 flux versus soil

temperature at the Germantown

site: a Day 1; b Day 2; and

c Day 3

Fig. 10 CO2 flux versus soil

moisture at the Germantown

site: a Day 1; b Day 2; and

c Day 3
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natural soils. Hence, it was expected that there will be

higher correlation between fluxes and temperature on

reclaimed mine soils with AMD-caused CO2. It appears the

complexity of responsible factors mask any effect of the

exothermic reactions on soil surface temperatures (tem-

peratures were measured in the first 250 mm of soil). Soil

gas efflux depends on the rate of gas production, degree of

soil compaction (and hence macro-porosity) and presence

of preferential flow paths. It may also be that the heat

transfer to the surface is minimal and does not lead to any

significant changes in soil temperature.

The lack of significant correlation between CO2 efflux

and soil temperature observed for the Germantown site is

not uncommon (Reth et al. 2005). The seasonal and diurnal

variations in CO2 fluxes, and the conditions, can lead to

variations in observed correlations. Due to the limited

resources, it was not possible to collect the data simulta-

neously at all three sites. Further research is required to

completely rule out the presence of any correlation

between soil temperature and fluxes at this site. If that is

shown to be true, then this further research will explore the

differences between this site and the Hudson site.

CO2 flux versus soil moisture

CO2 fluxes were found to be negatively correlated with soil

moisture for 67 % of the sampling days (2 out of 3 days) at

each of the Hudson and Germantown sites. This is con-

sistent with the literature. The correlation is reported to be

negative due to effects of moisture on gas diffusivity

through air-filled porosity (Bekele et al. 2007). Precipita-

tion and, subsequent, infiltration result in a wetting front,

which reduces soil air-filled porosity from the surface

downwards (Risk et al. 2002; Guo et al. 2008). The soil-

CO2 efflux at the surface is suppressed as the soil gases are

forced and compressed into the deeper soil pores where the

degree of saturation is less than 100 %. Soil moisture

relationship is reported to switch from being negative to

positive at very low volumetric soil moisture content below

12 % (Davidson et al. 1998).

CO2 flux versus sample elevation

CO2 flux is significantly correlated with sample elevation for

67 % of the data from the Hudson and Germantown sites and

for 100 % of the data from the Godin site. The correlation

was found to be significant at a = 0.05 and was negative.

The relationship appears to be nonlinear as the Spearman

correlation coefficients appear to be more significant than

the Pearson coefficients. Neto et al. (2011) reported a similar

observation for CO2 and nitrous oxide (N2O) fluxes for much

larger elevation differences (300–600 m). The results here

show that this relationship (negative correlation between

fluxes and elevation) exists, even for small elevation dif-

ferences (15–76 m). The literature does not offer any par-

ticular explanation for this relationship. Neto et al. (2011)

suggested that it may be due to a combination of air and soil

temperature, soil properties, species composition and res-

piration rates and nutrient supply.

This research cannot offer any definitive explanation for

this observation either. The authors can offer two possible

hypotheses. Firstly, the authors hypothesize that correlation

between fluxes and elevation could be caused by the fact

that CO2 is heavier than air and will migrate ‘‘downhill’’ if

the flow pathways exist. For example, Laughrey and Bal-

dassare (2003) show a house downhill of a mine which

accumulated CO2 in the basement because of dipping

sedimentary seams in the direction of the house. However,

this will only be true of the deeper AMD-generated CO2

and not the CO2 generated in the surface soil (root respi-

ration and microbial activity). Secondly, if the majority of

the CO2 is from the surface soil, then the correlation

between CO2 fluxes and elevation is likely due to some soil

property (e.g. labile C) that is varying with elevation. This

is more likely to be the case at the Godin site, for instance,

where this correlation was observed for all sampling days

and less likely to be the explanation for the Hudson and

Germantown sites where no significant correlation was

observed on one of the three sampling days. This should be

the focus of further research.

Correlation between explanatory variables

Soil temperature was found to be significantly correlated

with soil moisture for only 33 % of the data sets at both the

Hudson and Germantown sites. It was, however, correlated

with sample elevation for all of the data sets at the Hudson

site. There was significant (a = 0.1) correlation observed

between soil temperature and sample elevation for Ger-

mantown for 67 % of the data. There was no significant

correlation between soil moisture and sample elevation.

The presence of significant correlation between some of

the explanatory variables indicates possible confounding

effects that may mask some of the correlation between CO2

fluxes and the explanatory variables. Such confounding

effects make it difficult to isolate the real correlation between

fluxes and the explanatory variables in all the data sets.

Conclusions

This study’s objective was to examine the relationship

between soil CO2 fluxes and elevation, soil moisture and

soil temperature. Specifically, the study sought to examine

this relationship on reclaimed mine land where there is

CO2 generated from AMD-carbonate reactions and
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evaluate whether the relationships are any different from

those observed in natural soils. From the results, the fol-

lowing conclusions can be drawn:

• There is statistically significant correlation between soil

CO2 flux and soil temperature, just as has been

observed in natural soils. The correlation coefficients

on the reclaimed mine soils appear to be lower.

• Where present and significant, correlation between CO2

flux and soil moisture is negative. This is consistent

with observations on natural soils.

• CO2 flux and sample elevation show significant and

negative correlation even where the elevation differ-

ences are small. The authors are not aware of any other

instances where this relationship has been examined for

small (\100 m) differences in sample elevation.

• Statistically significant and negative correlation were

observed between soil temperature and sample eleva-

tion. In a third of the cases, soil temperature was

observed to be significantly correlated to soil moisture.

These observed correlations between explanatory vari-

ables may be the source of confounding effects, which

make it difficult to accurately characterize the relation-

ships between the variables.
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