
 

1 

 

Title: Assessing Bioremediation of Acid Mine Drainage in Coal Mining Sites Using a Predictive 

Neural Network-Based Decision Support System (NNDSS)
1
 

 

OSM Cooperative Agreement Number: S08AP12918 

 

Type of Report: Final 

 

Reporting Period Start date:  09/01/2008 

 

Reporting Period  End date:   04/30/2010 

 

Principal Author:  Prof Victor M. Ibeanusi, PhD. 

Professor and Chair, Environmental Science and Studies Program 

Spelman College, Atlanta GA 30314 

 

Date Report was Issued:  February 21, 2011 

 

OSM Award Number: S08AP12918 

 

 

Disclaimer. This report was prepared as an account of work sponsored by an agency of the 

United 

States Government. Neither the United States Government nor any agency thereof, nor 

any of their employees, makes any warranty, express or implied, or assumes any legal 

liability or responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents that its use would 

not infringe privately owned rights. Reference herein to any specific commercial 

product, process, or service by trade name, trademark, manufacturer, or otherwise does 

not necessarily constitute or imply its endorsement, recommendation, or favoring by 

the United States Government or any agency thereof. The views and opinions of 

authors expressed herein do not necessarily state or reflect those of the United States 

Government or any agency thereof. 

 

                                                           
1 

Project title change to address adjustments in the project following a visit from John Craynon, Mining Engineer 

and Chief, Division of Regulatory Support, Office of Surface Mining on December 3, 2008. 

 



 

2 

 

Abstract:  

In this study, an Artificial Neural Network (ANN) was developed as a predictive tool for 

identifying optimal remediation conditions for groundwater contaminants that include selected 

metals found at coal mining sites. The ANN was developed from a previous field data obtained 

from a bioremediation project at an abandoned mine at Cane Creek in Alabama, and from a coal 

pile run off at a Department of Energy’s site in Aiken, South Carolina. The evaluative 

parameters included pH, redox, nutrients, bacterial strain (MRS-1), and type of microbial growth 

process (aerobic, anaerobic or sequential aerobic-anaerobic conditions).  Using the conditions 

predicted by the Neural Networks, significant levels of As, Pb, and Se were precipitated and 

removed over eight days in remediation assays containing 10 mg/L of each metal in cultures that 

include MRS-1. The results showed 85%, 100% , and 87% reductions of As, Pb, and Se, 

respectively.  The results from these ANN- driven assays are significant. It provides a roadmap 

for reducing the technical risks and uncertainties in clean-up programs.  Continuous success in 

these efforts will require a strong and responsive research that provides a decision support 

system for long-term restoration efforts.  

Key Words: Groundwater contaminant, Acid mine drainage (AMD), Artificial Neural Networks 

(ANN), Metals 

 

List of Graphical Materials 

 Fig. (1) Neural Network Test data 

 Fig. (2) ANN prediction (control) 

 Fig. 3-6 ANN predictions with varying test parameters 

 Fig 7-8 Utilizing ANN to test optimal bioremediation conditions for metals 

 Table 1: Descriptive information of data used to train the neural network 

 

 Table 2. Treatment and Removal of Metals 

 

Introduction: 

The extent to which microbial systems can be used in treatment of metals acid mine drainage 

(AMD) sites varies with the species and may be complicated by the nature of both the absorbent 

and the metal species in aqueous solution.  Therefore, strategies that involve the use of microbial 

processes will depend to a large degree on their ability to accumulate a variety of metal ions 

before the cells become affected by metal toxicity. 

The chemical and biological reactions of pyrite in AMDs generate acidic minerals, which can 

oxidize to form sulfuric acid, ferrous sulfate, and associated toxic metals.  Two major reactions 
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have been noted to be responsible for the oxidation process (Manahan, 2010, Lovell, 1983, Allen 

et al, 19966, Vinyard, 1996). 

This is a complex reaction that begins with the oxidation of pyrite, and continues with the  

oxidation of  iron (II) ion to iron(III) ion 

2FeS2(s) + 7O2 + 2H20   4H
+
 + 4SO4

2-
 + 2Fe

2+ 
    (a) 

4Fe
2+ 

+ O2 + 4H
+
  4Fe

3+
 + 2H20     (b) 

Since reactions (a) and (b) are pH sensitive, the rate law could be represented as: 

-d[Fe
2+

]/dt = K[Fe
2+

] [02(aq)]/[H
+
]

2
     (c) 

The re-oxidation of ferrous ions in reaction (b) can be accelerated by sulfur-oxidizing acidophilic 

bacteria such as Acidithiobacillus ferrooxidans  and other acidophilic microbes (Brenner, 2001 ).  

The Fe
3+ 

 from reaction (b) further dissolves pyrite 

FeS2(s) + 14Fe
3+

 + 8H2O  15Fe
2+

 2SO4
2-

 + 16H   (d) 

This in combination with reaction (b) forms a cyclic reaction for the dissolution of pyrite to form 

iron (III) precipitates as hydrated iron(III) (Manahan, 2010) 

Fe
3+

 + 3H2O  Fe(OH)3(s) + 3H
+     

(e) 

Castro, et.al., (2001) had noted that in the presence of air and water, it is possible to generate 

various insoluble ions such as Fe(S04)3 . H20 (ferrous sulfate), FeSO4 . 7H20 (Melanterite), and 

FeS04)3 ; 9H20 (Coquimbite).   

The primary intent of this proposal is to mitigate the reoxidation of ferrous ions by promoting the 

growth of ferrous-sulfate dependent bacterial strains. 

Passive Treatment Systems 

The total cost of cleaning up pollution from AMD sites is difficult to quantify. The US EPA 

identified 156 abandoned mine sites that were on or had potential to be on the National Priorities 

List (NPL) for remediation under the Comprehensive Environmental Response, Compensation 

and Liability Act (CERCLA), with the potential to cost between $7 and $24 billion to clean up 

(US EPA, 2005; Costello, 2003; Skousen, 1998; and Younger, 2000). Regions where soils are 

relatively acidic and low in carbonates offer the least attenuation (Wagner, 1984). Chemical 

processes for the treatment of mine water are expensive and typically result in high quantities of 

inorganic sludge materials for disposal. Thus, there are significant  opportunities for biological 

treatment efforts with enhanced strategies for metal recovery (Ibeanusi and Wilde, 1998). The 

cost challenge also  presents opportunities for re-assessing the processes in passive treatment 
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such that the roles and functions of the microbial communities are fully utilized for enhanced 

treatment. Currently, the basic design for passive treatment systems involves chemical or 

biological acid neutralization and metals removal. Some examples are described: (a) Aerobic 

Wetlands (AW). The shallow configuration of this system encourages emergent vegetations, 

with the goal of promoting the oxidation of Fe and Mn, and the co-precipitation of metals (Eger 

and Wagber, 2003; USDA and EPA, 2000); (b) Anoxic Limestone Drains (ALD). In this is 

system, mine water flows through limestone channel under anoxic conditions. The process 

promotes alkalinity and prevents limestone armoring.  Fe is precipitated accordingly (Watzlaf et 

al, 2000); (c) Open Limestone Channels (OLC). Similar to ALD, alkalinity is promoted, with the 

precipitation of Al, Fe, Mn as metal oxides (Ziemkewicz et al;, 1997); (d) Successive Alkalinity 

Producing Systems (SAPS). This falls under the vertical flow systems, which allow mine water 

to drain through layers of limestone and anaerobic organic matter.  The system promotes 

alkalinity, sulfate reduction and metal precipitation;  (e) Anaerobic Wetlands. This subsurface 

system is designed to be isolated from atmosphere by standing water or overlying material. The 

system promotes alkalinity; sulfate reduction and precipitation of metal sulfides; and sorption or 

uptake by vegetation (Kepler and McCleary; 1994 Zipper and Jage, 2001); and (f) Sulfate-

Reducing Bioreactors. Mine water drains into anoxic chamber containing organic matter and 

sulfate –reducing bacteria. The system also promotes alkalinity, sulfate reduction, metal 

precipitation, and sorption (Gusek, 2002)’ and (g) Amendments. This is an alternative approach 

to passing mine water through a treatment system, and designed to perform in situ treatment, by 

adding amendments to standing water, soil, tailings piles, or exposed rock surfaces. The system 

may serve multiple purposes, such as revegetation and soil stabilization, acid neutralization, 

contaminant immobilization, or stimulation of microbial-mediated alkalinity addition and metals 

removal (Chaney et al., 2000). 

Role of Biotechnology in AMD Mitigation 

Microorganisms can be involved in AMD abatement, primarily through the reduction of metals 

and sulfates, as well as other alkalinity generating processes.  The extent to which each process 

may contribute to the neutralization of AMD depends upon the chemical composition of AMD, 

the availability of necessary electron donors/receptors, temperature, and pH within the mine-

waste environment.  Acidophilic heterotrophic bacteria present in the AMD environment may be 

involved in AMD that are potentially toxic to iron-oxidizing bacteria, thereby inhibiting 

biologically mediated iron oxidation reactions (Johnson, 1995).  Other species demonstrated the 

ability to reduce the Fe present either as soluble or as solid-phase compounds to ferrous iron. 

Mn and Fe may also contribute to the neutralization process.  Microorganisms, including the 

heterotrophic bacteria Pseudomonas, Clostridium, and Desulfovibro, can directly reduce Mn and 

Fe by using them as final electron acceptors under anaerobic conditions.  The ability to oxidize  

ferrous ion is widespread among acidophilic heterotrophic bacteria and has been reported for 

Acidithiobacillus ferrooxidans  growing on elemental sulfur. When ferric ion is reduced to ferrous 
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iron, the  removal of iron from AMD becomes easier, because ferrous iron reacts with sulfide 

produced by sulfate reduction, and this ultimately, results in the removal of Fe and promotes 

alkalinity. Sulfate reduction leads to permanent alkalinity generation. Sulfate reduction leads to 

permanent alkalinity production when H2S gas is released from mine waste environment. 

Other biologically mediated process that can contribute to AMD neutralization by ultimately 

consuming H ions include: ammonification by various microorganisms; denitrification, where a 

number of bacteria species, such as Pseudomonas, Paracoccus, Flavbacterium, Alcaligens, and 

Bacillus spp, convert ammonia to nitrates under anaerobic conditions; and methane generation 

by methanogenesis. 

Microbiological Sulfate Reduction 

A group of bacteria called sulfate  reducers (SRB), such as Desulphovobrio spp can convert 

sulfate contained ARD to sulfide and can generate bicarbonate in the  presence of organic carbon 

nutrient sources using it as an electron donor under anoxic and reducing conditions. Sulfate 

reduction first produces HS.  The HS generated forms insoluble metal complexes and results in 

the removal of metals such as Fe.  The bicarbonate released results in an alkalinity 

2CH20 +S04
2-

  HS
-
 + 2HC03

-
 + H

=
 

Fe + FeS 

SRB
 
 are known to be natural soil bacteria and can be found in soils. They require low-molecular 

organic carbon compounds (eg simple organic acids), suitable concentrations of sulfate (.200 

mg/l). a pH level greater than 4.5, and low Eh (-150mV). SRB can function  in the absence of 

oxidizing agents such as 02 and Fe
3+

.  Low- molecular weight carbon compounds (eg lactic acid 

and acetate) used by SRB are common products of natural degradation (i.e. microbial 

fermentation) processes, which occur in anoxic environments (Wetland, 1993; Bechard et al, 

1994; Kuyucak and St-Germain, 1994). A variety of materials, depending on their cost and 

availability, can be used
 
.  They may include industrial wastes  such as molasses, sewage sludge, 

compost, and manure.  The materials can be supplemented with materials containing nitrogen 

and or phosphorus to obtain the optimal nutrient composition required. The pH requirements are 

obtained by the alkalinity  generated by microbial activity and carbonate dissolution. 

The overall process results in an improvement in water quality due to the precipitation of metals 

as sulfides, with the H2S generated in organic substrates and neutralization of the acidity due to 

the bicarbonate released during sulfate reduction. 
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Executive Summary 

This project  integrates microbiological processes into Artificial Neural Networks (ANN) 

technology as a strategy that provides a decision support system for  reducing the technical risks 

and uncertainties in achieving enhanced treatment of acid mine drainage sites. Conventional 

passive treatment of mine water has primarily focused on constructed wetlands technology and 

their associated types of vegetations.  One of the draw backs in these systems is that they tend to 

work well in mildly acidic water (pH < 4.5), and in more acidic water (< 3.5), they often would 

accumulate metals, especially dissolved aluminum, which over time, reduces the permeability of 

the anoxic limestone drains to the point of failure. The roles of microbes in these systems have 

not been fully explored, and their functions remain poorly understood. The bacterial culprit in 

these mine water reactions is Acidithiobacillus ferrooxidans , a chemolithothrophic bacterium that 

derives energy from oxidizing ferrous and sulfide ions to ferric and sulfate ions, respectively, 

with the resultant pH of 2-3.  

Through this study, we have identified bacterial strains, which through nutrient manipulations 

are able to compete and out-grow A. ferroxidans in mine water, without the active re-oxidation 

of ferrous and sulfide ions to insoluble ferric ions and sulfate.  Using this knowledge base, we 

have developed an Artificial Neural Networks from a previous field project that was collected 

from a project at abandoned mine at Cane Creek Surface Mining (OSM), we have accumulated 

promising data that supports the use of Artificial Neural Networks (ANN) as a useful predictive 

tool for assessing the remediation of acid mine drainage sites.   

Our intent in this project is to incorporate the various nutrient augmentations and bacterial strains 

as additional inputs in the Neural Networks so that the outputs from the ANN could be optimized 

for enhanced mine water treatment.  Specifically, the objectives of this proposal are to: (1) 

isolate, identify, and optimize the growth conditions of specific bacterial strains in mine water; 

(2) incorporate the growth conditions from Objective 1 to optimize our ANN; and (3) Use the 

output results from the ANN to demonstrate the treatment of acid mine drainage at a specific 

OSM site. As described, this proposal is designed to address one of the objectives of the National 

Technology Transfer Team (NTTT) of the OSM by promoting a broader understanding of and 

support for technology transfer in OSM.   

In addition, the proposal will support one of the goals of the NTTT Applied Science Program by 

providing opportunities for minority institutions to participate in research projects related to coal 

mining in order to build the pool of a diverse workforce for the OSM. 
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Experimental: 

 

Designing and Training Methods of the Artificial Neural Networks 

 

An artificial neural network (ANN) is a mathematical simulation of the neurological functioning 

of the brain. The ANN consists of neurons and connections between the neurons corresponding 

to inputs similar to the way the brain functions. The neurons are called “nodes” that are grouped 

in layers. A multilayer neural network consists of (1) an input layer, (2) a number of hidden 

layers, and (3) an output layer. The nodes in each layer are connected to the nodes of the next 

layer in ANN.  Training of the network involved presenting the ANN with inputs data with 

known output. The ANN learns the pattern by adjusting the weights of the connections. During 

the training of ANN, the weights are adjusted until the error between the actual output and the 

predicted output is minimum. An optimal ANN design in terms of number of nodes and layers is 

usually designed with different combinations of nodes and layers several times. 

 

The ANN was built using field data from a previous project conducted by Prof.  Ibeanusi and his 

research team at Cane Creek Coal Valley Site, in Alabama, and at a Department of Energy’s 

Savannah River Coal Pile run off Site [6]. Approximately 80% of the data sets were used as 

training subsets. About 20% of the data was used as validation and monitoring subsets. After 

evaluation of complete training set, the overall network performance was assessed using the 

monitoring set. Commands in MATLAB were used to create models of the ANN to run 

efficiently. The methodology developed to design ANN with high accuracy is based on the 

neural network conceptualization. A set of commands were used to depict the training inputs and 

targets, to create and train the ANN, and to predict a new set of inputs (Table 1).  

 

A graphical user interface (GUI) was developed using MATLAB.  The GUI facilitated in 

studying the effects of temperature, aeration, treatment duration and ratios of nutrient, AMD and 

bacteria on the final pH of the bioremediation experiments. Profiles were predicted by varying 

one variable while keeping all other variables constant (Fig. 1). 

 

Water Sample and Metal Analysis 

 

Bacterial growth was determined  with Spectronic Gensys 2 at 600nm. Water samples and 

associated microbial biomass were initially digested with a CEM Microwave Digesting System 

(MDS 2000, CEM Corporation) and subsequently analyzed by Inductively Coupled Plasma 

(ICP) Spectrometry (Perkin Elmer 400, Covina, CA). All samples were acidified before ICP 

analysis.  Metal concentrations were calculated as follows: 

 

Metal concentration (mg l
-1

) 

 

Conc. Metal in digested sample (mg/l) x final vol. in digested soln. (ml) 

Sample volume (ml) 
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Metal Treatment and Removal Experiments 

 

In each triplicate culture containing 100 ml of mine water from a coal pile run off were 

inoculated with a mixture of mid log 10
6
 cell ml

-1
 of each bacterial strain and compared with two 

sets of control flasks with no bacterial addition. One set of the control flasks contained 

wastewater only, while the second set had wastewater plus nutrients.  This experimental set up 

allowed us to evaluate the role of the bacterial strains and the effects of the nutrients on the metal 

removal. 

 

Growth nutrients (in grams per liter) were ammonium sulfate, ammonium nitrate, 0.5; potassium 

phosphate, 0.5;  pyruvic acid, 1.2; and oxalic acid, 1.2. Pyruvic and oxalic acids were added to 

specifically inhibit the growth of indigenous bacteria in the mine water, such as Acidithiobacillus 

ferrooxidans, and other acidophiles, which are usually associated with acid mine drainage. Culture flasks 

were grown at 35
0
C in a shaker agitated at 160 rpm for 21 days. 

 

Results and Discussion 

 

The Artificial Neural Networks  

The objective of this project was to develop an ANN as a decision support system that serves as 

a tool to predict optimum bioremediation conditions for wastewater and surface water. The 

strategy is based on inputting field data into ANN to produce an optimum bioremediation model 

to effectively clean-up contaminated sites. The developed ANN was evaluated using field data 

from a remediation project of an acid mine drainage site, and from a coal pile run off.  

 

The ANN was trained to adapt and to learn from a training subset of the field data.  After 

training, the ANN was used to assess the ANN. Figure 1 shows a good correlation between ANN 

predicted values and measurements from the validation subset. These results show that the ANN 

approach to model bioremediation experiments is feasible. 

 

After the ANN was developed, ANNOT was used to predict the pH of 14 profile datasets. Fig. 2 

shows the remediation profile over time. Each curve represents an initial remediation condition. 

Fig. 2 shows that aeration (indicated by blue lines) and higher temperatures (indicated by 

continuous lines) promoted remediation. It shows that the red lines are stable and two blue lines 

increases to a higher stable pH level. On the other hand remediation is inhibited when no 

aeration is provided (indicated by red lines) and site temperature is low (indicated by dashed 

lines). In this case, dashed red lines tend to be on the bottom of the graph, while blue continuous 

lines tend to be on top.  

 

Partial remediation of the metals was also possible in the absence of bacteria if the growth 

conditions were augmented with nutrients and aeration. Nevertheless, for best initial conditions 

(air, nutrient, bacteria, and temperature at 25ºC) provided an excellent condition for metal 

remediation. (Figure 3-5). Remediation conditions were further investigated at 15 days for 

different treatment solutions.  The results, presented in Fig. 6, show that bioremediation can be 

achieved with CPRB or AMD ratio as great as 90%, as long as air is provided. If the amount of 

CPRB or AMD is greater than 90% it is difficult to achieve pHs greater than 5.  
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Remediation of Metals  

 

Once ANN was optimized, the remediation conditions it described were tested in the laboratory 

by growing MRS-1 bacterium in the presence or absence of Se, Pb, and As during an eight-day 

period.  The growth of MRS-1 was studied by measuring the absorbance at 600nm.  The growth 

of the bacterium in the presence of As, Pb, and Se appeared to have a similar growth profile as 

bacterial strain without any metal indicating the tolerance of this bacterium in metals. The 

concentrations of Pb, Se, and As decreased daily during the experiment.   

 

Conclusion 

 

The use of field data from a previous remediation project at Cane Creek, Coal Valley Site in 

Alabama, and from a coal pile run off at Department of Energy’s Savannah River Site to create 

an Artificial Neural Network was found to be an effective predictive tool for evaluating the 

efficiency and performance of remediation of acid mine drainage and groundwater contaminants. 

The project shows that the use of ANN is fast and could be used to predict optimum 

bioremediation conditions. Also, application of ANN is expected to reduce the time it takes to 

assess the bioremediation strategy to detoxify contaminants in both groundwater and surface 

water. The investigation of ANN identified optimal remediation conditions for metals. Future 

research will further improve ANN predictions for VOCs.   
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Fig. 1.  Neural Network Data with MathLab 
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Figure 2 – ANN prediction . CPRB = AMD derived from a coal pile run off basin  

 

 

 

Figure 3 - pH variation over treatment time: 5% of Nutrients and 5% of Bacteria 
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Figure 4 - pH variation over treatment time: 10% of Nutrients and 10% of Bacteria 

 

 

 

Figure 5 - pH variation over treatment time: 15% of Nutrients and 10% of Bacteria 
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Figure 6: pH variation over treatment time: various CPRB (AMD) concentrations 
 
 

 
 
Figure 7: Utilizing ANN to Predict Optimal Bioremediation Conditions 
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Figure 8: Utilizing ANN to Predict Optimal Bioremediation Conditions 
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Table 1: Descriptive information of data used to train the neural network 

 

 
 

% (vol.) in Treatment Solution 

Nutrients Used 
 

pH Day Nutrients CPRB/AMD Bacteria DI Water 

Input/ 
Output 

OUT IN IN IN IN IN IN 

Min 0.96 0.00 0.00 0.00 0.00 0.00 Oxalic Acid  
Sodium Acetate 
Fumaric Acid 
Succinic Acid 

Max 9.07 22.00 0.89 1.00 0.14 0.98 
Average 4.43 7.95 0.20 0.56 0.06 0.17 
Median 3.18 7 0.10 0.75 0.09 0.00 

 
Table 2. Treatment and Removal of Metals 

 Lead Selenium Arsenic 
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Day 0 (mg/L) 10 15 10 

Day 8 (mg/L) 0 2 1.5 

Percent Removal 100 86.6 85 

Percent Recovery 90 75 79 

CPRB-coal pile run off basin; AMD = acid mine drainage 
 


